This information is intended for use by health professionals

1. Name of the medicinal product

Amlodipine 5mg tablets

2. Qualitative and quantitative composition

Each tablet contains 5 mg amlodipine (as amlodipine mesilate monohydrate).

For the full list of excipients, see section 6.1.

3. Pharmaceutical form

Tablet

The tablets are white to off-white, round biconvex and embossed with “5” on one side.

4. Clinical particulars
4.1 Therapeutic indications

Essential hypertension.

Chronic stable and vasospastic (Prinzmetal's) angina pectoris.

4.2 Posology and method of administration

Posology

Adults

For treatment of both hypertension and angina pectoris the usual initial dose is 5 mg once daily. If the desired therapeutic effect cannot be achieved within 2-4 weeks this dose may be increased to a maximum dose of 10 mg daily (as single dose) depending on the individual patient's response.

In hypertensive patients, amlodipine has been used in combination with a thiazide diuretic, alpha-blocker, beta-blocker, or an angiotensin converting enzyme inhibitor. For angina, amlodipine may be used as monotherapy or in combination with other antianginal medicinal products in patients with angina that is refractory to nitrates and/or to adequate doses of beta blockers.

No dose adjustment of amlodipine is required upon concomitant administration of thiazide diuretics, beta-blockers, and angiotensin-converting enzyme inhibitors.

Paediatric population

Children with hypertension from 6 years to 17 years of age.

The recommended antihypertensive oral dose in pediatric patients ages 6-17 years is 2.5 mg once daily as a starting dose, up-titrated to 5 mg once daily if blood pressure goal is not achieved after 4 weeks. Doses in excess of 5 mg daily have not been studied in pediatric patients (see sections 5.1 and 5.2 ).

Children under 6 years old

The effect of amlodipine on blood pressure in patients less than 6 years of age is not known.

The 2.5 mg dose cannot be obtained with Amlodipine tablets 5 mg as these tablets are not manufactured to break into two equal halves

Elderly

Amlodipine used at similar doses in elderly or younger patients is equally well tolerated. Normal dosage regimens are recommended in the elderly, but increase of the dosage should take place with care (see Sections 4.4 and 5.2).

Renal impairment

Changes in amlodipine plasma concentrations are not correlated with degree of renal impairment, therefore the normal dosage is recommended. Amlodipine is not dialysable. (see Section 5.2)

Hepatic impairment

Dosage recommendations have not been established in patients with mild to moderate hepatic impairment; therefore dose selection should be cautions and should start at the lower end of the dosing range (see sections 4.4 and 5.2). The pharmacokinetics of Amlodipine have not been studied in severe hepatic impairment. Amlodipine should be initiated at the lowest dose and titrated slowly in patients with severe hepatic impairment.

Method of administration

Tablets for oral administration. The tablets should be taken with a glass of water independently from meals.

4.3 Contraindications

Amlodipine is contra-indicated in patients with:

• severe hypotension

• shock (including cardiogenic shock)

• hypersensitivity to amlodipine, dihydropyridine derivatives or any of the excipients listed in section 6.1

• haemodynamically unstable heart failure after acute myocardial infarction (during the first 28 days)

• obstruction of the outflow-tract of the left ventricle (e.g. high grade aortic stenosis)

4.4 Special warnings and precautions for use

The safety and efficacy of amlodipine in hypertensive crisis has not been established.

Cardiac failure

Patients with heart failure should be treated with caution. In a long-term, placebo controlled study in patients with severe heart failure (NYHA class III and IV) the reported incidence of pulmonary oedema was higher in the amlodipine treated group than in the placebo group, but this was not indicating an aggravation of the heart failure (see Section 5.1). Calcium channel blockers, including Amlodipine, should be used with caution in patients with congestive heart failure, as they may increase the risk of future cardiovascular events and mortality.

Impaired hepatic function

The half-life of amlodipine is prolonged and AUC values are higher in patients with impaired liver function; dosage recommendations have not been established. Amlodipine should therefore be initiated at the lower end of the dosing range and caution should be used, both on initial treatment and when increasing the dose. Slow dose titration and careful monitoring may be required in patients with severe hepatic impairment.

Elderly patients

In the elderly, increase of the dosage should take place with care (see Sections 4.2 and 5.2).

Renal failure

Amlodipine may be used in such patients at normal doses. Change in Amlodipine plasma concentrations are not correlated with degree of renal impairment. Amlodipine is not dialyzable.

Paediatric population (under 18 years of age)

Amlodipine should not be given to children due to insufficient clinical experience.

4.5 Interaction with other medicinal products and other forms of interaction

Effects of other medicinal products on amlodipine

CYP3A4 inhibitors: Concomitant use of Amlodipine with strong or moderate CYP3A4 inhibitors (protease inhibitors, azole antifungals, macrolides like erythromycin or clarithromycin, verapamil or diltiazem) may give rise to significant increase in amlodipine exposure. The clinical translation of these PK variations may be more pronounced in the elderly. Clinical monitoring and dose adjustment may thus be required.

Clarithromycin is an inhibitor of CYP3A4. There is an increased risk of hypotension in patients receiving clarithromycin with amlodipine. Close observation of patients is recommended when amlodipine is co administered with clarithromycin.

CYP3A4 inducers

Upon co-administration of known inducers of the CYP3A4, the plasma concentration of amlodipine may vary. Therefore, blood pressure should be monitored and dose regulation considered both during and after concomitant medication particularly with strong CYP3A4 inducers (e.g. rifampicin, hypericum perforatum).

Administration of amlodipine with grapefruit or grapefruit juice is not recommended as bioavailability may be increased in some patients resulting in increased blood pressure lowering effects.

Dantrolene (infusion): In animals, lethal ventricular fibrillation and cardiovascular collapse are observed in association with hyperkalemia after administration of verapamil and intravenous dantrolene. Due to risk of hyperkalemia, it is recommended that the coadministration of calcium channel blockers such as amlodipine be avoided in patients susceptible to malignant hyperthermia and in the management of malignant hyperthermia.

Effects of amlodipine on other medicinal products

The blood pressure lowering effects of amlodipine adds to the blood pressure-lowering effects of other antihypertensive agents.

In clinical interaction studies, amlodipine did not affect the pharmacokinetics of atorvastatin, digoxin, warfarin or ciclosporin.

Simvastatin: Co-administration of multiple doses of 10 mg of amlodipine with 80 mg simvastatin resulted in a 77% increase in exposure to simvastatin compared to simvastatin alone. Limit the dose of simvastatin in patients on amlodipine to 20 mg daily.

Trimethoprim and in fixed dose combination with sulfamethoxazole (Co-trimoxazole):

An increased incidence of hyperkalaemia was observed in patients taking ACE Inhibitors and trimethoprim and in fixed dose combination with sulfamethoxazole (Co-trimoxazole).

Tacrolimus

There is a risk of increased tacrolimus blood levels when co-administered with amlodipine but the pharmacokinetic mechanism of this interaction is not fully understood. In order to avoid toxicity of tacrolimus, administration of amlodipine in a patient treated with tacrolimus requires monitoring of tacrolimus blood levels and dose adjustment of tacrolimus when appropriate.

mTOR inhibitors:

An increased risk of angioedema is possible in patients taking concomitant medications such as mTOR inhibitors (e.g. Temsirolimus, Everolimus, Sirolimus). Caution should be used when starting therapy.

Cyclosporin

No drug interaction studies have been conducted with cyclosporin and amlodipine in healthy volunteers or other populations with the exception of renal transplant patients, where variable trough concentration increases (average 0% - 40%) of cyclosporin were observed. Consideration should be given for monitoring cyclosporin levels in renal transplant patients on amlodipine, and cyclosporin dose reductions should be made as necessary.

4.6 Fertility, pregnancy and lactation

Pregnancy

The safety of amlodipine in human pregnancy has not been established. In animal studies, reproductive toxicity was observed at high doses (see section 5.3). Use in pregnancy is only recommended when there is no safer alternative and when the disease itself carries greater risk for the mother and foetus.

Breast-feeding

Amlodipine is excreted in human milk. The proportion of the maternal dose received by the infant has been estimated with an interquartile range of 3-7%, with a maximum of 15%. The effect of amlodipine on infants is unknown. A decision on whether to continue/discontinue breast-feeding or to continue/discontinue therapy with amlodipine should be made taking into account the benefit of breast-feeding to the child and the benefit of amlodipine therapy to the mother.

Fertility

Reversible biochemical changes in the head of spermatozoa have been reported in some patients treated by calcium channel blockers. Clinical data are insufficient regarding the potential effect of amlodipine on fertility. In one rat study, adverse effects were found on male fertility (see section 5.3).

4.7 Effects on ability to drive and use machines

Amlodipine can have minor or moderate influence on the ability to drive and use machines. If patients taking amlodipine suffer from dizziness, headache, fatigue or nausea the ability to react may be impaired. Caution is recommended especially at the start of treatment.

4.8 Undesirable effects

Summary of safety profile

The most commonly reported adverse reactions during treatment are somnolence, dizziness, headache, palpitations, flushing, abdominal pain, nausea, ankle swelling, oedema and fatigue.

The following undesirable effects have been observed and reported during treatment with Amlodipine with the following frequencies:

Very common:

Common:

Uncommon:

Rare:

Very rare:

Not known

≥1/10

≥1/100 to <1/10

≥1/1000 to ≤1/100

≥1/10 000 to ≤1/1000

≤1/10 000

Frequency cannot be estimated from the available data.

Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness.

System organ class

Frequency

Adverse reactions

Blood and lymphatic system disorders

Very rare

Leukocytopenia, thrombocytopenia

Immune system disorders

Very rare

Allergic reactions

Endocrine disorders

Not Known

Syndrome of inappropriate antidiuretic hormone secretion (SIADH)

Metabolism and nutrition disorders

Very rare

Hyperglycaemia

Psychiatric disorders

Uncommon

Insomnia, mood changes (including anxiety), depression

Rare

Confusion

Nervous system disorders

Common

Somnolence, dizziness, headache (especially at the beginning of the treatment)

Uncommon

Tremor, dysgeusia, syncope, hypoesthesia, paresthesis

Very rare

Hypertonia, peripheral neuropathy

Not known

Extrapyramidal disorder

Eye disorders

Common

Visual disturbance (including diplopia)

Ear and labyrinth disorders

Uncommon

Tinnitus

Cardiac disorders

Common

Palpitations

Uncommon

Arrhythmia (including bradycardia and atrial fibrillation)

Very rare

Myocardial infarction

Vascular disorders

Common

Flushing

Uncommon

Hypotension

Very rare

Vasculitis

Respiratory, thoracic and mediastinal disorders

Common

Dyspnoea

Uncommon

Rhinitis, cough

Gastrointestinal disorders

Common

Abdominal pain, nausea, dyspepsia, altered bowel habits (including diarrhoea and constipation)

Uncommon

Vomiting, dry mouth

Very rare

Pancreatitis, gastritis, gingival hyperplasia

Hepatobiliary disorders

Very rare

Hepatitis, jaundice, hepatic enzymes increased*

Skin and subcutaneous tissue disorders

Uncommon

Alopecia, purpura, skin discolouration, hyperhidrosis, pruritus, rash, exanthema, urticaria

Very rare

Angioedema, erythema multiforme, exfoliative dermatitis, Stevens-Johnson syndrome, Quincke oedema, photosensitivity

Not known

Toxic Epidermal Necrolysis

Musculoskeletal and connective tissue disorders

Common

Ankle swelling, muscle cramps

Uncommon

Arthralgia, myalgia, back pain

Renal and urinary disorders

Uncommon

Micturition disorder, nocturia, increased urinary frequency

Reproductive system and breast disorders

Uncommon

Impotence, gynecomastia

General disorders and administration site conditions

Very common

Oedema

Common

Fatigue, asthenia

Uncommon

Chest pain, pain, malaise

Investigations

Uncommon

Weight increase, weight decrease

*mostly consistent with cholestasis

Exceptional cases of extrapyramidal syndrome have been reported.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme; website: www.mhra.gov.uk/yellowcard or search for MHRA Yellow Card in the Google Play or Apple App Store.

4.9 Overdose

In humans, experience with intentional overdose is limited.

Symptoms

Available data suggest that large overdosage could result in excessive peripheral vasodilatation and possibly reflex tachycardia. Marked and probably prolonged systemic hypotension up to and including shock with fatal outcome have been reported.

Management

Clinically significant hypotension due to amlodipine overdosage calls for active cardiovascular support including frequent monitoring of cardiac and respiratory function, elevation of extremities, and attention to circulating fluid volume and urine output.

A vasoconstrictor may be helpful in restoring vascular tone and blood pressure, provided that there is no contraindication to its use. Intravenous calcium gluconate may be beneficial in reversing the effects of calcium channel blockade. Gastric lavage may be worthwhile in some cases. In healthy volunteers the use of charcoal up to 2 hours after administration of amlodipine 10mg has been shown to reduce the absorption rate of amlodipine. Since amlodipine is highly protein-bound, dialysis is not likely to be of benefit.

5. Pharmacological properties
5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Calcium channel blockers, selective calcium channel blockers with mainly vascular effects

ATC code: C08CA01

Mechanism of action

Amlodipine is a calcium ion influx inhibitor of the dihydropyridine group (slow channel blocker or calcium ion antagonist) and inhibits the transmembrane influx of calcium ions into cardiac and vascular smooth muscle.

The mechanism of the antihypertensive action is due to a direct relaxant effect on vascular smooth muscle. The precise mechanism by which amlodipine relieves angina has not been fully determined but Amlodipine reduces total ischaemic burden by the following two actions:

1. Amlodipine dilates peripheral arterioles and thus, reduces the total peripheral resistance (afterload) against which the heart works. Since the heart rate remains stable, this unloading of the heart reduces myocardial energy consumption and oxygen requirements.

2. The mechanism of action of Amlodipine also probably involves dilatation of the main coronary arteries and coronary arterioles, both in normal and ischaemic regions. This dilation increases myocardial oxygen delivery in patients with coronary artery spasm (prinzmetals or variant angina).

Clinical efficacy and safety

In patients with hypertension, once daily dosing provides clinically significant reductions of blood pressure in both supine and standing positions throughout the 24 hour interval. Due to slow onset of action, acute hypotension is not a feature of Amlodipine administration.

In patients with angina, once daily administration of amlodipine increases total exercise time, the delay of occurrence of anginal attack and the delay of the occurrence of a 1-mm ST interval. Amlodipine decreases both angina attack frequency and glyceryl trinitrate tablet consumption.

Amlodipine has not been associated with any adverse metabolic effects or changes in plasma lipids and is suitable for use in patients with asthma, diabetes, and gout.

Coronary artery disease (CAD)

The effectiveness of amlodipine in preventing clinical events in patients with coronary artery disease (CAD) has been evaluated in an independent, multi-center, randomized, double- blind, placebo-controlled study of 1997 patients; Comparison of Amlodipine vs. Enalapril to Limit Occurrences of Thrombosis (CAMELOT). Of these patients, 663 were treated with amlodipine 5-10 mg, 673 patients were treated with enalapril 10-20 mg, and 655 patients were treated with placebo, in addition to standard care of statins, beta-blockers, diuretics and aspirin, for 2 years. The key efficacy results are presented in Table 1. The results indicate that amlodipine treatment was associated with fewer hospitalizations for angina and revascularization procedures in patients with CAD.

Table 1. Incidence of significant clinical outcomes for CAMELOT

Cardiovascular event rates,

No. (%)

Amlodipine vs. Placebo

Outcomes

Amlodipine

Placebo

Enalapril

Hazard Ratio (95% CI)

P Value

Primary Endpoint

Adverse cardiovascular events

110 (16.6)

151 (23.1)

136 (20.2)

0.69 (0.54-0.88)

.003

Individual Components

Coronary revascularization

78 (11.8)

103 (15.7)

95 (14.1)

0.73 (0.54-0.98)

.03

Hospitalization for angina

51 (7.7)

84 (12.8)

86 (12.8)

0.58 (0.41-0.82)

.002

Nonfatal MI

14 (2.1)

19 (2.9)

11 (1.6)

0.73 (0.37-1.46)

.37

Stroke or TIA

6 (0.9)

12 (1.8)

8 (1.2)

0.50 (0.19-1.32)

.15

Cardiovascular death

5 (0.8)

2 (0.3)

5 (0.7)

2.46 (0.48-12.7)

.27

Hospitalization for CHF

3 (0.5)

5 (0.8)

4 (0.6)

0.59 (0.14-2.47)

.46

Resuscitated cardiac arrest

0

4 (0.6)

1 (0.1)

NA

.04

New-onset peripheral vascular disease

5 (0.8)

2 (0.3)

8 (1.2)

2.6 (0.50-13.4)

.24

Abbreviations: CHF, congestive heart failure; CI, confidence interval; MI, myocardial infarction; TIA, transient ischemic attack.

Cardiac failure

Haemodynamic studies and exercise based clinical trials in NYHA Class II-IV heart failure patients have shown that amlodipine did not lead to clinical deterioration as measured by exercise tolerance, left ventricular ejection fraction and clinical symptomatology.

A placebo controlled study (PRAISE) designed to evaluate patients in NYHA Class III-IV heart failure patients receiving digoxin, diuretics and ACE inhibitors has shown that amlodipine did not lead to an increase in risk of mortality or a combined risk of mortality and morbidity with heart failure.

In a follow-up, long term, placebo controlled study (PRAISE-2) of Amlodipine in patients with NYHA III and IV heart failure without clinical symptoms or objective findings suggestive or underlying ischaemic disease, on stable doses of ACE inhibitors, digitalis, and diuretics, Amlodipine had no effect on total cardiovascular mortality. In this same population Amlodipine was associated with increased reports of pulmonary oedema.

Treatment to prevent heart attack trial (ALLHAT)

A randomized double-blind morbidity-mortality study called the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) was performed to compare newer drug therapies: amlodipine 2.5-10 mg/d (calcium channel blocker) or lisinopril 10-40 mg/d (ACE-inhibitor) as first-line therapies to that of the thiazide-diuretic, chlorthalidone 12.5-25 mg/d in mild to moderate hypertension.”

A total of 33,357 hypertensive patients aged 55 or older were randomized and followed for a mean of 4.9 years. The patients had at least one additional CHD risk factor, including: previous myocardial infarction or stroke (> 6 months prior to enrolment) or documentation of other atherosclerotic CVD (overall 51.5%), type 2 diabetes (36.1%), HDL-C < 35 mg/dL (11.6%), left ventricular hypertrophy diagnosed by electrocardiogram or echocardiography (20.9%), current cigarette smoking (21.9%).

The primary endpoint was a composite of fatal CHD or non-fatal myocardial infarction. There was no significant difference in the primary endpoint between amlodipine-based therapy and chlorthalidone-based therapy: RR 0.98 95% CI (0.90-1.07) p=0.65. Among secondary endpoints, the incidence of heart failure (component of a composite combined cardiovascular endpoint) was significantly higher in the amlodipine group as compared to the chlorthalidone group (10.2% vs. 7.7%, RR 1.38, 95% CI [1.25-1.52] p<0.001). However, there was no significant difference in all-cause mortality between amlodipine-based therapy and chlorthalidone-based therapy. RR 0.96 95% CI [0.89-1.02] p=0.20.

Paediatric population (aged 6 years and older)

In a study involving 268 children aged 6-17 years with predominantly secondary hypertension, comparison of a 2.5mg dose, and 5.0mg dose of amlodipine with placebo, showed that both doses reduced Systolic Blood Pressure significantly more than placebo. The difference between the two doses was not statistically significant.

The long-term effects of amlodipine on growth, puberty and general development have not been studied. The long-term efficacy of amlodipine on therapy in childhood to reduce cardiovascular morbidity and mortality in adulthood have also not been established.

5.2 Pharmacokinetic properties

Absorption

After oral administration of therapeutic doses, amlodipine is well absorbed with peak blood levels between 6-12 hours post dose. Absorption of amlodipine is not influenced by concomitant food intake. Absolute bioavailability of the unchanged active substance is estimated to be 64-80%. Peak plasma levels are reached 6-12 hours after administration.

Distribution

The volume of distribution is approximately 21 l/kg. The pKa of amlodipine is 8.6. In vitro studies have shown that amlodipine is bound to plasmatic proteins up to 97.5%.

Biotransformation

Amlodipine is extensively metabolized by the liver to inactive metabolites with 10% of the parent compound.

Elimination

The plasma elimination half-life is about 35-50 hours and is consistent with once daily dosing. 60% of metabolites are excreted in the urine.

Hepatic impairment

Very limited clinical data are available regarding amlodipine administration in patients with hepatic impairment. Patients with hepatic insufficiency have decreased clearance of amlodipine resulting in a longer half-life and an increase in AUC of approximately 40-60%.

Elderly

The time to reach peak plasma concentrations is similar in elderly and younger patients. The clearance tends to be decreased with resulting increases in (AUC) and terminal elimination half-life in elderly patients. Increase in AUC and elimination half-life in patients with congestive heart failure were as expected for the patient age group studied.

Paediatric population

A population PK study has been conducted in 74 hypertensive children aged from 1 to 17 years (with 34 patients aged 6 to 12 years and 28 patients aged 13 to 17 years) receiving amlodipine between 1.25 and 20 mg given either once or twice daily. In children 6 to 12 years and in adolescents 13-17 years of age the typical oral clearance (CL/F) was 22.5 and 27.4 L/hr respectively in males and 16.4 and 21.3L/hr respectively in females. Large variability in exposure between individuals was observed. Data reported in children below 6 years is limited.

5.3 Preclinical safety data

Reproductive toxicology

Reproductive studies in rats and mice have shown delayed date of delivery, prolonged duration of labour and decreased pup survival at dosages approximately 50 times greater than the maximum recommended dosage for humans based on mg/kg.

Impairment of fertility

There was no effect on the fertility of rats treated with amlodipine (males for 64 days and females 14 days prior to mating) at doses up to 10 mg/kg/day (8 times* the maximum recommended human dose of 10 mg on a mg/m2 basis). In another rat study in which male rats were treated with amlodipine besilate for 30 days at a dose comparable with the human dose based on mg/kg, decreased plasma follicle-stimulating hormone and testosterone were found as well as decreases in sperm density and in the number of mature spermatids and Sertoli cells.

Carcinogenesis, mutagenesis

Rats and mice treated with amlodipine in the diet for two years, at concentrations calculated to provide daily dosage levels of 0.5, 1.25, and 2.5 mg/kg/day showed no evidence of carcinogenicity. The highest dose (for mice, similar to, and for rats twice* the maximum recommended clinical dose of 10 mg on a mg/m2 basis) was close to the maximum tolerated dose for mice but not for rats.

Mutagenicity studies revealed no drug related effects at either the gene or chromosome levels.

* Based on patient weight of 50kg.

6. Pharmaceutical particulars
6.1 List of excipients

Microcrystalline cellulose

Calcium hydrogen phosphate

Sodium starch glycollate type A

Magnesium stearate

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

3 years.

6.4 Special precautions for storage

Do not store above 30°C. Store in the original package.

6.5 Nature and contents of container

PVC/PE/PVdC-aluminium blister.

Pack sizes:

10, 14, 20, 28, 30, 50, 98, 100 and 200 tablets

Not all pack sizes may be marketed.

6.6 Special precautions for disposal and other handling

No special requirements.

7. Marketing authorisation holder

Accord-UK Ltd

(Trading style: Accord)

Whiddon Valley

Barnstaple

Devon

EX32 8NS

8. Marketing authorisation number(s)

PL 00142/0614

9. Date of first authorisation/renewal of the authorisation

Date of first authorisation: 11th October 2004

Date of latest renewal: 11th October 2009

10. Date of revision of the text

13th November 2018